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The motion of a disk rising steadily parallel to the axis of rotation in a uniformly 
rotating unbounded liquid is considered. In the limit of zero Rossby number the linear 
viscous equations of motion are reduced to a system of dual integral equations which 
renders an 'exact' solution for arbitrary values of the Taylor number, Ta. The 
investigation is focused on the drag and the flow field. In the limits of small and large 
Tu the asymptotic results of the present formulation agree with-and extend- 
previous investigations by different approaches. 

A particular novel feature, for large Ta, is the contribution of the Ekman-layer flux 
to the outer motion. New insight into the structure of the Taylor column is gained; in 
particular, it is shown that the main part of the column is a 'bubble' of recirculating 
fluid, detached from the body and not communicating with the Ekman layer. However, 
it turns out that the essential discrepancy in drag between experiments (Maxworthy 
1970) and previous theories cannot be attributed to the Ekman-layer suction effect. 

1. Introduction 
The motion of a particle in a rotating fluid, parallel to the axis of rotation, is of 

interest from several points of view. This is a fundamental problem in the theory of 
' unbounded' rotating fluids, which has important counterparts in the theory of 
stratified and conducting fluids, and essential implications for the modelling of rotating 
two-phase suspensions (Ungarish 1993). A theoretical background is given in 
Greenspan (1968, in particular Chap. 4). Without going into the historical details of the 
many pertinent investigations, we shall point out here some important outcomes 
relevant to the present work. 

The equations governing the motion of an incompressible viscous fluid, in a system 
rotating with constant angular velocity a*, are the conservation of mass and 
momentum : 

V . v *  = 0, (1) 

v*V x V x v*. 
av* VP* - - - + v * . V v * + 2 Q * x v *  =--- 
at* P* 

(2 )  

Here v* is the velocity in the rotating coordinate system, P* is the reduced pressure, t* 
time, p* and v* are the density and kinematic viscosity of the fluid; a* and I/* denote 
the radius and velocity of the particle. Asterisks denote dimensional variables. 

t To whom correspondence should be addressed. 
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To non-dimensionalize (1) and (2) the following scaling is utilized: 

{r*, t*, v* ,  P*} = 

Now the governing equations read 
v * v  = 0. 

(3) 

(4) 

(5) 
av 
at 
-+(RoTa)v.Vv+2Ta(z"xv)  = - V P - V x V x v ,  

where z" is the unit vector in the direction of the axis of rotation. 

motion of the particle: 
Two independent dimensionless parameters highlight the flow field generated by the 

a*'Q* V* 
v* , Ro=- 

Q*a*' 
Ta = __ 

and their combination is 
Re = Ro Ta = a* V*/v* 

The Taylor number, Ta, expresses the typical ratio of the Coriolis to the viscous 
force in the fluid (Ta  is actually the inverse of the Ekman number of the particle). The 
Rossby number, Ro, a ratio of the convective to the Coriolis accelerations, estimates 
the relative importance of nonlinear terms. The Reynolds number, Re, has the usual 
interpretation. 

Setting Ro = 0 in (5) yields the important linear formulation, which we adopt here. 
The boundary conditions are no-penetration and no-slip on the particle, whose 
geometry is specified, and free-stream velocity at infinity. 

Two limiting linear cases have been studied in detail : the slightly viscous rapid 
rotation, Ta+ co, and the viscous slow rotation, Ta+ 0. 

The solution of the linear, steady-state rapidly rotating and inviscid (Tap' = 0) 
problem is not unique. 

Stewartson (1952) obtained a formal complete solution of the linear, time- 
dependent, inviscid (Ta-' = 0) case of an ellipsoid starting impulsively from rest. Here 
the momentum balance is between the time-dependent, Coriolis and pressure terms. In 
the steady-state limit the drag on a circular particle such as a sphere or a disk is given 

D* = yQ*a*31/* *. (7) 
by 

P 

The corresponding flow field is an infinitely long column of swirling fluid moving with 
the particle, identified as the Taylor column. The swirl velocity is infinite and 
discontinuous on the cylindrical boundary of this column. The detailed time-dependent 
solution of the analogous problem for a disk was presented by Greenspan (1968, 
Sect. 4.3). 

Morrison & Morgan (1956) considered the steady, rapidly rotating, slightly viscous 
(Ta  % 1) flow field around a disk. Their report was distributed but apparently 
unpublished, and the main results are mostly known from the re-derivation, with due 
credit, in Moore & Saffman (1969, section 8). Therefore the latter is commonly used 
as a reference and we shall follow this trend. In this solution the main approximation 
was that the z-derivatives in the shear terms were discarded, so that no 'horizontal' 
Ekman layer could appear and the no-slip conditions could not be imposed. (It can be 
argued that the results are essentially correct also for a sphere.) However, the non- 
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physical discontinuity of Stewartson’s solution at the lateral surfaces of the Taylor 
column is removed by the retained viscous effects. The drag is the same as the above- 
mentioned Stewartson’s result, (7). An important feature in this solution is the finite 
axial extent of the Taylor column; as pointed out by Barnard & Pritchard (1975), the 
stagnation point of the axial velocity (with respect to the body) yields this length as 
0.052Ta (in dimensionless form). This will be discussed in more detail in 94. 

The opposite limit of Tu has been investigated by perturbations around the 
Stokesian (creeping) non-rotating flow, Ta = 0, which yielded the well-known formula 

D* = 6~cv*p*a*V* (8) 

for a sphere. The corresponding result for a disk translating along its axis (see Ray 
1936) is 

The analysis of Childress (1964) for a spherical particle moving parallel to the axis of 
rotation, assuming Ta < 1, resulted in 

D* = 16v*p*u*V*. (9) 

D* = 6nv*p*a* V*( 1 +$Tug). (10) 

A similar dependency on Ta was predicted for other circular geometries, as discussed 
later. The numerical solutions of the full Navier-Stokes equations presented by 
Dennis, Ingham & Singh (1982) provide support and additional information on the 
drag and the flow field for the range Ta d 0.5, 0.05 ,< Re ,< 0.5 (note that Ro 2 0.1). 

The intermediate range Ta = O( 1) - O( 100) defies simplification and has therefore 
received little theoretical attention. Weisenborn (1 985)  used the special method of 
induced forces to calculate the drag on a sphere for arbitrary Ta, but gave no 
information on the flow field, Dennis et al. (1982) could not obtain reliable numerical 
solutions in this range because of difficulties of satisfying the boundary conditions as 
the computational domain elongates. 

Experiments on a spherical particle in different ranges of parameters were performed 
by Taylor (1922) and Maxworthy (1965, 1970). The latter combined the determination 
of the drag with observation of the flow field. We note that similar experimental results 
for the disk configuration are not available, to the best of our knowledge, perhaps 
because of additional practical difficulties that may occur in producing a stable 
broadside motion of a very thin body. 

The theoretical drag for small Tu (actually, up to 0.75) is in good agreement with the 
measurements. Comparisons in the intermediate range have not been performed. 

The situation for large Tu appears to be rather perplexing. Maxworthy (1970) 
reported drag values much larger (about 50 %) than the theoretical predictions. 
On the other hand, the length of the ‘slug’ (Taylor column) turned out to be 
consistent with the results of Moore & Saffman (1969) (this was actually pointed out 
by Barnard & Pritchard 1975). 

Three factors were suspected as causes of this discrepancy: (i) the wall effect (from 
the ‘horizontal’ top and bottom of the container) on the flow field, not accounted for 
in the theoretical consideration; (ii) the omission of the Ekman layers and of the associ- 
ate no-slip boundary conditions in the theoretical consideration of Moore & Saffman; 
(iii) the omission of the convective terms (linearization of the equations), since the 
‘small’ Ro in the experiments was of order 0.01-0.1, perhaps not small enough. 

Hocking, Moore & Walton (1979) incorporated the influence of ‘horizontal’ 
boundaries in Moore & Saffman’s (1969) analysis (again, the no-penetration is 
accounted for, but no Ekman layers are incorporated). The conclusion was that this 
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wall effect yields a relatively small increase of drag in the configuration tested by 
Maxworthy (1970), substantially below the reported discrepancy. 

The influence of the Ekman layer remained largely unclear. Maxworthy (1970) 
suggested that the fluid within the stagnant ‘slug’ was drawn into the Ekman layer; but 
he also mentions that ‘No attempt has been made to calculate the more complicated 
interaction problem defined when the effect of the Ekman boundary-layer flux on the 
outer flow is to be found. It is well known that such effects are of great importance in 
rotating flows, but they are not sufficiently well understood to allow a quantitative, or 
even qualitative, extension to the present case’. In this context, it is also worth 
mentioning that the ‘ slug’, extensively referred to by many investigators, remained 
basically obscure regarding the flow inside (i.e. whether the fluid in this domain is 
slowly flowing or recirculating, or both). Consequently, from the analytical point of 
view the boundaries of the ‘slug’ have not been defined, and only the tip of it has been 
identified in a rather ad hoc manner as the position of the farthest stagnation point on 
the axis. 

The present investigation attempts to throw some new light on the problem via the 
exact solution of the full linear system for the steady-state flow field past a rising disk 
for arbitrary values of Ta; the Ekman layers are implicitly accounted for when Ta 9 1, 
and the drag, at any Ta, is a straightforward product. 

Although the disk is formally less interesting than the sphere, the present work 
advances knowledge in several aspects: an exact solution for the flow field and drag 
is provided; the previous approximate solutions for small Ta are confirmed and 
extended; the flow field for the moderate-Ta range is covered; for large Ta the 
contribution of the Ekman layers to the structure of the Taylor column is established. 
However, no substantial modification of the drag for large Ta was found, so that the 
unexplained discrepancy with Maxworthy’s measurements appears to be either an 
experimental error or a paradox. 

The outline of this paper is as follows. In $2 the governing equations are reduced 
to a system of dual integral equations and the formal solution of the problem is 
obtained. Evaluation of the drag with respect to Tu is performed in 53. Section 4 
describes the flow field, and a discussion of present results versus previous knowledge 
is presented in $ 5 ,  

2. Formal solution 

is 
In view of the axial symmetry, the scalar form of the governing equations (4) and ( 5 )  

Here r and z are the radius and axial coordinate in a cylindrical frame attached to the 
centre of the disk and rotating with the unperturbed fluid, and u = {u, 21, w}. To close 
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the boundary value problem the conditions on the disk and at infinity should be 
specified. Since the equations do not contain convection terms and the domain is 
unbounded, no rotation of the torque-free disk relative to the embedding fluid is 
possible. Hence 

u = v = w = O  at O G r G l ,  z = O ;  ( 1  5 )  

u = v = O ;  w = - 1  at r 2 + z 2 + c o .  (16) 

The solution of the system is attempted using the Hankel transform: 

where p is the parameter of the transform (not to be confused with the pressure P). 
Differentiation of ( 1 3 )  and (14) with respect to r and application of (1 7) yields 

-2Taii= -m+( -p2+$)u,  

~ --(-)+( a ap - p 2 + $ ) m  = 0, aZ ar 
- 

az ar 

Differentiation of (21) with respect to z and elimination of (aplar) and (a/az) (awlar) 
by virtue of (19) and (22) produces 

Combining (23) with (20) yields 

which is essentially a sixth-order ordinary differential equation for ii(z), with p treated 
as a parameter. Its characteristic equation is 

(25) 4Ta2Z2 + (Z2-p2)3  = 0. 

This sixth-order equation can be easily reduced to a third-order one by introducing a 
new variable h and a parameter s: 

z2 4 Ta2 h = - - l ,  , y - .  

P2 P 4  

h3+sh+s = 0;  

Now the characteristic equation reads 
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its three roots, by Cardano's formula, are 
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A, = €1 + €z, 

A, = - $ ( ~ ~ + e J + + i d 3  (eJ-c2), 

h 3 = -$(el +e,)-32/3 (el - e J ,  

where 

[ (s3 s')i] 
c z =  -is- -+- 

27 4 ' 

The general solutions of (24), decaying for z + co and z + - 00, read 

$ = a T ( p ,  T ~ )  e-~(l+Al)iz +pT@,  T ~ )  e-~(l+Az2);z + y ~ ( p ,  ~ a )  e-p(l+A,)'z 9 

VB = aB(p, Ta) eP(l+Al)'Z + p ~ ( p ,  ~ a )  ep(l+Az)iz + y ~ ( p ,  ~ a )  ep(l+Aa)'z 
(33) 

(34) 

Hereafter, the superscripts T and B denote solutions for z 2 0 and z < 0 respectively 
(top, bottom). Substitution of (33) into (18) produces, for the physical variable u at the 
upper (upstream) half-space ( z  2 0), 

ZIT = Jo"PJl(rP)[a T e --p(l+Al)iz + p T  e-p(l+Az):z + Y T  e(l+A8)iz 1 dP. (3 5) 

Utilization of the results for zi in (12) gives the following values for the u-component: 

Substitution of (36) into (14) and subsequent integration on account of (16) give 

The appropriate formulae for the velocity components u and zi in the half-space z < 0 
are similar: the superscript T should be replaced by B and - in the exponents by + ; 
also, for w the sign before the integral should be changed to - .  

Hence, to evaluate the flow field the six unknown functions aT ,  aB, PT, p", y T ,  and 
y B  are to be determined. 

The form of the governing equations and the symmetry of the configuration suggest 
symmetry relationships about the plane of the disk in the flow field considered, i.e. 

u(r,z) = -u(r,  -z) ,  zi(r,z) = -Z)(Y, - z )  w(r,z)  = w(r, -z) .  (38) 

These three requirements, on account of (35)-(37), and their counterparts for z < 0 are 
consistent and equivalent, in turn, to 

a T  = - a B ,  p' = -p", yT = - yB. (39) 

Denote & = a T ,  p = p ,  y =  yT. (40) 
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Hence, a, p, and y are the three unknown functions left instead of six. Further progress 
is based on additional use of (38). They readily imply 

(41) u(r,z = 0)  = z’(r,z = 0)  = 0. 

Since (41) is true for any r ,  it imposes, via (35) and (36), the conclusion 

Solving for p and y in terms of a :  

reduces the number of unknown functions to one, a(p, Ta). 

prescribing P = 0 at r2 + z2 + co, (1 I)  yields for z b 0 
For further progress the pressure has to be determined. In view of (35) and (36), 

In view of (38) it is easily seen from the equations of motion that 

P(r, -z)  = - P(r, z) .  (46) 

In particular, in the plane of the disk, in view of (42), the pressure is 

P(v, z = 0+) = -__ p4J0(rp) [ah: +phi +?hi] dp. (47) 2ka  Jr 
It is useful also to evaluate the stream function, ?+h(r, z) .  Prescribing ?+h = 0 on the axis 

(hence also on the disk), and on account of (37), for the upper half-space, one obtains 

$ = r r w ( r , z ) d r  = -2+mJo r2 1 rp2Jl(rp) 
0 

To determine a a system of dual integral equations is formulated. The first equation 
expresses the no-penetration requirement on the disk surface, which, by virtue of (37) 
for z = 0, reads 

for 0 < r < 1. (49) 

The complementary equation is based on the pressure continuity at z = 0, r > 1, 
which, in view of the symmetry (46), implies 

P(r , z=  0 )  = 0 for r > 1. (50) 
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On account of (47) and (44), (50) yields 
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+ h i L  a@,Ta)dp = 0 for r > 1. (51) 
h - A 3  

p4Jo(rp) X+h;'- -"'I /Om [ 
Equations (49) and (5 1) form the dual integral equations for a as a function of p for 

any given Ta. The solution is attempted by the method suggested by Tranter (1951), 
as follows. In general, consider the dual integral equations 

where f ( p )  is the unknown function, G"(p) is a prescribed function and A a given 
parameter. Tranter showed that the system (52), (53) is satisfied by 

where the coefficients am are prescribed by the linear system 

m=O 

cr; 

an + C L n , m a m  = 0 
m=o 

Ln,m = (4n + 2k) [pzPzkG"(p) - 6: where 

for n 3 1, (56)  

Formally, the parameter k > 0 can be cho-en rather arbitrarily, subject to the 
restriction that the improper integrals Ln,m converge. However, in particular 
applications the 'proper' and perhaps unique choice of k is essential, as seen later. 

Comparing our problem, which is described by the dual integral equations (49) and 
(51), with the general one (52), (53), it is readily seen that by identifying 

where 

the exact form of (52), (53) is recovered. (Recall that hi are defined by (28)-(32).) 
Thus for the present 6 ( p )  and A ,  the unknown functionflp) can be determined from 

the dual integral equations by Tranter's method, and subsequently via (58) the function 
a is obtained. Next, application of (44), (39), (40) provides the functions under the 
integrals in (35)-(37), whose numerical evaluation renders the flow-field variables. 
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FIGURE 1 .  Graph of functions G ,  1 - G  and p 2 / T a  us. p/Tai .  

The essential task in the evaluation off(p) is the calculation of the improper integrals 
(57), which depend on G"(p). Since Aj are functions of s only, where s = 4Ta2/p4, 
invoking (58)-(60), the following representation is evident : 

1 

P 
G"(p) = -G(s). 

The behaviour of G is shown in figure 1 ; in general 

and in particular 
G(s) > 0, 0 < 1 - G(s) < S, 

G(s) = 2sd+ 2 / 2 s f +  O(s-') for s+ co. 

On account of (62) it can be concluded from (57) that the best rate of convergence 
for Ln,m is attained by k = +, which motivates the choice of k in the subsequent 
analysis; we shall see later that this value of k also satisfies an important physical 
requirement. 

3. Drag 

the formula for the drag, D: 
Denoting again by T and by B the upstream and downstream flow regions, we write 

D = JJ(PT - P") dS  = 27c r[PT(r,  z = 0+) - PB(r,  z = 0-)] dr. il: (64) 

Only pressure (form) drag occurs on the disk, because clearly the shear terms on the 
surface z = const cannot contribute to the force in the axial direction, and the 
vanishing thickness eliminates the shear contribution from the circumference, Y = 1 .  In 
view of the antisymmetry of pressure, see (46), (47) and (58)-(60), 

rP(r ,z  = O+)dr = 47c (65) 
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Application of the relationship 
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J,(X) x dx = xJ,(x) 
yields the compact result s 
On account of (54), with k = i, (67) takes the form 

For i = 0 the integral in (68) reduces to a standard one (Abramowitz & Stegun 1964, 
(11.4.35)): 

In view of the formula (Watson 1952, p. 403) 

which is valid provided ,u + v + 1 > h > 0, one obtains 

Thus (68) reduces to 
D = 4(2~) ia , .  

For the evaluation of the drag a simple computer program, which uses standard 
Bessel function and integration routines, was devised. The infinite system (55) ,  (56) was 
truncated to N = 5 equations; this gives three digits of accuracy in D, as concluded 
from numerical tests with N up to 20. Actually, this truncation is a critical issue of the 
solution, as discussed and validated later. The results of computations are presented in 
tables 1-3. Also shown in these tables are the corresponding results for drag on the 
sphere of Weisenborn (1985). For the sake of discussion it is convenient to consider 
separately the following ranges of Ta. 

3.1. Small Ta 
Enlightening and accurate approximations of the coefficient a, can be obtained for 
Ta + 0, which turn out to be valid even for Ta z 1.  The procedure here is an asymptotic 
evaluation of the exact solution, in contrast to the singular perturbation solution of the 
equations of motion that was used by Childress (1964) to obtain similar results. 

The main task in the solution of (55), (56) with k = is the calculation of (57), i.e. 

Ln,m = (4n + 1) 1:; (G(o)) - 1 )  ~ z m + i ( P )  ~zn+i(P) dp, (73) 

for m, n = 0,1,  ... N .  It can be shown, see Appendix A, that 
(a)  for Ta-t 0,  

L ~ , ~  = O(Tai) for m+n 2 1 ; 

L , , ~  = - K Tat + O(Tai), 
(74) 

(75) 
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where K = 0.485; (76) 

1 1  

(b) for an arbitrary value of Ta, 

The solution of ( 5 9 ,  (56 )  is attempted in view of (74)-(77). Denoting by L the matrix 
of coefficients (LnJ and by / the identity matrix, the formal solution is 

The norm of L ,  defined as rnax{~~+,L, , ,}  with respect to n, can be estimated: 
IILII = O(Tai) as Tu+O. Hence it is justified for Ta + 1 to approximate the inverse 
matrix by 

consequently, 

in particular, (78) and (80) yield 

(/+L)-' = / - L  +L2+O(L3); (79) 

(80) ( /+L)- '  = ( 1  +0.485 Tai+0.4852Ta)/+O(Tai); 

a,, = ___ d 2 ( 1  +0.485 Tai+0.4852Ta+O(Ta:)). 
7+ 

Combining (81)  and (72) one obtains that for Ta+O the drag on the disk is 

D = 16(1+0.485 Ta2+0.485'Ta+O(Ta?). (82) 
The first interesting observation is that, for Ta = 0, (82) yields D = 16 (the 

dimensional form is obtained by multiplying with the scaling factor v*p*a* V*). This 
is exactly the classic, creeping-flow drag on a disk in a non-rotating flow, as given by 
(9). 

Another interesting aspect of (82) follows from the comparison with Childress' 
(1964, equation (22)) result, obtained by a perturbation around the Stokes' solution, 
for a body of axial and fore-and-aft symmetry, 

Here the subscript designates the geometry of the particle, and the superscript S 
denotes Stokes' drag on this body in non-rotating flow. Whence, according to (83), the 
drag on the disk on account of (9) and (8) is 

Ddlsk = 16 1 +- Taz + O(Tu). ( 2?ll I )  

Since 32/217c = 0.485 the agreement between (84) and (82) is excellent. 
The analysis of Weisenborn (1985) added one more term to (10): 

Dsphere = 6n( 1 + 4 Tai + (+)"a) + O( Tag). (85)  
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0.025 1.08 1.08 1.1 1.09 f 0.01 
0.1 1.17 1.17 1.21 1.22 f 0.03 
0.5 1.46 1.47 1.57 1.57+0.05 
1 .o 1.72 1.74 1.9 - 

TABLE 1. The drag for small Ta. (i) Approximate results for disk (82); (ii) 'exact' results for disk; 
(iii) Weisenborn's results for sphere; (iv) Maxworthy's experimental results for sphere 

The perfect agreement between three independent outcomes (with respect to the first- 
order correction) attained by means of different techniques serves as a major ad hoe 
validation of the mathematical techniques employed in this study. Moreover, 
comparison among (82)-(85) leads to the conjecture that (83) can be extended by one 
more term, as follows: 

It is also interesting to compare the analytical approximation of (82) with the 
'exact' results, see table 1. The error naturally increases with Ta, but even for Ta as 
large as 1 it is still less than 2 % .  Thus, the asymptotic result (82) possesses high 
accuracy for Ta < 1. 

The numerical solutions of Dennis et al. (1982) for Ta < 0.5, Ro 6 1 and the 
experimental results of Maxworthy (1965) for Ta < 0.75 are in very good agreement 
with Weisenborn's calculations; this suggests that (82) and the generalized result (86) 
are also physically valid in this range of the parameters Ta and Ro. 

3.2. Moderate Ta 
The range of moderate values was defined here as 1 < Ta < 100. Comparison in this 
intermediate range of Ta could be made only with the sphere drag results of 
Weisenborn (1985), see table 2. Both display the same dependency on Ta; the drag on 
the sphere (contributed by pressure and shear) is larger than on the disk, but the 
difference is reduced from approximately 30 YO to 15 YO as Ta increases from 1 to 100. 

3.3. Large Ta 
Ta >, 100 can be considered 'large' because the flow field displays typical features of 
rapid rotation: a well-defined Taylor column and distinct Ekman layers, as discussed 
in the next section. The computations, however, could be carried out with satisfactory 
accuracy only up to about Ta = 10000, see table 3. Evidently, when Ta increases, the 
drag on the disk approaches the magnitude determined by Stewartson's formula (7), 
i.e. D/Ta = 16/3 = 5.33. (At Ta = 10000, the computed value is 5.31, slightly lower 
than the asymptotic one, probably due to round-off errors.) This 'exact' result is, 
versus classic approximations, of primary importance in the present investigation. 

The drag on a sphere, calculated by Weisenborn (1985), is also shown in table 3. It 
is recalled that the drag on the disk is caused by the pressure difference, while on the 
sphere there is an additional contribution from the shear stresses. The results of table 
3 support the anticipation that for large Ta the pressure distribution - hence the 
pressure (form) drag-on the disk and on the sphere are very close. It is seen that 
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Ta 

1 
2.5 
5 
7.5 

10 
25 
50 
75 

100 

(i) Dd,,,, 

27.9 
39.1 
56.0 
72.0 
87.6 

177 
320 
459 
597 

(4 Dspaere 

35.8 
50.9 
70.4 
93.0 

112 
217 
379 
533 
686 

TABLE 2. The drag for intermediate Ta: (i) for disk (present results); (ii) for sphere (from 
Weisenborn) 

Ta 

100 
250 
500 
750 

1000 
3000 
6000 

10 000 
100000 

5.97 
5.66 
5.52 
5.47 
5.44 
5.36 
5.34 
5.31 
- 

6.86 
6.26 
5.98 
5.86 
5.79 

- 

5.47 
5.38 

6.77 
6.24 
5.98 
5.86 
5.79 

~ 

5.48 
5.38 

TABLE 3. The drag for large Ta: (i) for disk (present results); (ii) for sphere (from Weisenborn); 
(iii) for sphere, fitted formula 

Weisenborn’s results also approach asymptotically the prediction (7). However, these 
results suggest the fitting D = yTu(l+2.7Tu-i), see table 3 ,  while the disk drag seems 
to behave like D = y T u ( l +  O(Tu-’)) with 1 > g. It was not possible to accurately 
determine I, but analysis of pressure in $4 suggests 1 = (see (97)). 

4. Flow field 
The description of the flow field is given in terms of the stream function in the 

meridional plane, see (48), angular velocity w = u/r, see (35) ,  and pressure, see (45). 
Because of symmetry (asymmetry) of the flow-field variables with respect to the plane 
of the disk, only the upper half-space z 3 0 is considered. 

Figure 2 shows stream lines for increasing values of Tu. Qualitatively, the pattern 
does not change much when Tu varies from 0 to 10, as can be concluded from figure 
2(u, b), except a tendency of the lines to concentrate toward the disk and the axis when 
Tu increases. 

Further increase of Tu produces a distinct ‘horizontal’ Ekman layer over the disk, 
a ‘vertical’ shear layer, and a remarkable change of the flow close to the axis in the core 
(figures 2 c, d). A qualitative novel feature appears when Tu attains approximately 37 : 
the streamline y9 = 0 on the axis ‘splits’ above the disk to encompass a special region 
of trapped fluid, having the form of a bubble. With the growth of Tu the size of the 
‘bubble’ quickly increases, (figure 2 e , f ) .  

Of special interest is the flow for large Tu; the following discussion is concerned with 
this range. The present calculations, carried out up to Tu = 10000, indicate the 
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following distinct results concerning the geometry of the recirculation ‘ bubble ’ and 
flow field when Ta-t co, figure 2(g, h). The highest point of the bubble is situated on 
the axis. At this point the axial velocity vanishes and the zero streamline bifurcates. The 

The lowest point of the bubble on the axis, where the axial velocity vanishes once more, 
is characterized by h, z 0.6 x 1OP2Ta. The lowest point of the bubble (here the axial 
velocity vanishes as well) is at hmin > 1 ; therefore, the bubble and the Ekman layer 
are well separated. The rightmost tip of the bubble approaches r = 1 (approximately 
rmaz z 1 - 1.5 x Tap$). 

The fluid trapped in the bubble is in recirculating motion: it is not stagnant, but does 
not participate in the mass transfer around the particle. A convenient parameter to 
estimate the recirculation in the bubble is the maximal value of $ inside, which 
increases with Ta to the asymptote of about 0.86 x lo-’. 

The fluid from upstream bends around the bubble and enters the zone below at 
r = r,,, = 1 - O(Ta-i). Consider now the region between the bubble and the body, 
bounded by the above-mentioned r,,,. The fluid in this region is continuously supplied 
from the far field and subsequently drained by the Ekman layer. The axial velocity in 
this region is dominated by the Ekman layers and is O(Ta-i). 

Evidently, the ‘column of liquid’ observed by Taylor (1922) and the ‘slug’ of 
coloured fluid watched by Maxworthy (1970) should be identified as the projection of 
the envelope of the ‘bubble’ on the ( r ,  z)-plane. 

This gives rise to the following question: why did these investigators not report 
on the separating region between the body and the bubble? But a closer look will 
probably reverse the question to: what experiment is able to reveal this region? 
Actually, for an external observer, it is extremely difficult to see the fluid in the region 
0 6 r < r,,,, hmin < z < h,, see figure 2(h), especially when the fluid in the bubble is 
dyed. Next, consider the region 0 6 r 6 1 ,  0 6 z < hmin = O(1). On a disk this fluid is 
amenable to observation, but its equivalent on the surface of an opaque sphere, as used 
by Taylor and Maxworthy (the disk is now, roughly, the equatorial plane) is, again, 
obscured. Consequently, even an extremely careful observer may reach the erroneous 
conclusion that the ‘slug’ is in direct contact with the Ekman layer on the surface of 
the sphere. 

The present solution justifies the conjecture of Barnard & Pritchard (1975) that the 
length of the Taylor column is analytically determined by the farthest point on the axis 
where the axial velocity vanishes; they obtained, using Moore & Saffman’s (1969) 
results, the distance 0.052Ta, very close to the present h,,, = 0.051Ta, and in good 
agreement with Maxworthy’s value of 0.059Ta. 

The envelope of this Taylor column is stagnant with respect to the particle, but the 
velocity field inside requires attention. First, it is worth emphasizing that no drastic 
change of velocity or pressure across the boundary of the column was detected (in 
contradiction to Maxworthy’s observation of a fast variation of w and P on the axis). 
Second, the ‘inviscid’ Taylor column solution (Stewartson 1952; Moore & Saffman 

position of the point is h,,, z 5.1 x 10-2Ta. (87) 

1969), 7 1  

w = 0, u = 0, r <  1, 

which predicts that the fluid over the particle r < 1 moves with it as a whole body, is 
asymptotically valid in only a very small portion of the present column, z < h,. For 
instance, on the axis, at z z O.O3Ta, we find w z -0.2 (i.e. of the order of magnitude 
of the free stream) and at z = 0.04Ta we detect w = 1.2 (i.e. more than twice the 
prediction of (88)). Third, recall the recirculation with $.,,, z 0.86 x lo-’ inside the 
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bubble. The terms ‘slug’ or ‘stagnant’ for such a quite dynamic flow-field region may 
be misleading. 

The values attained by the angular velocity, o, are significantly higher in the bubble 
than predicted by the inviscid solution (88). Approaching the bubble on the axis from 
upstream we observe that w increases up to approximately twice the value predicted by 
(88) at the middle of the bubble, then drops and remains practically constant and equal 
to (88) for z < h,, see figure 3.  This behaviour in the bubble region is in accordance with 
Maxworthy’s observations ; however, he reported a rather sharp variation of the 
variable around h,,,. 

Some interesting and novel features appear upon considering in some detail the 
pressure distribution on the disk, z = 0. By (47), (58)-(60), it reads 

w, z = 0) = Jo(rp)f(p) dP. (89) 1: 
Considering the p --f 00 limit and invoking the approximation 

one can derive from (54) the asymptotic result 
m 

f(p) % (+ c amcos(p-;(2m+k)7C-$n) 

- - (~)p:-*cos(p-;kn-+rr) (-1)”a,. 

nP m =o 
cc 

m=o 
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and splitting the interval of integration in (89) at some A ,  >> 1, yields 

P(r,  z = 0) z ro J,,(rp)f(p) dp + 0- Jo(rp)pi-k cos (p -ikn -in) dp. (93) 
0 A0 

Analysis of (93) leads to important elucidation on two issues: (a) the 'proper' value 
of the parameter k,  and (b) the contribution of the edge of the disk to the solution. 

It is first recalled that the choice of the constant k in the expansion (54) is not 
determined by Tranter's method and remains rather arbitrary. The appropriate 
considerations in choosing k are the provision of: 

(i) convergence of the integrals in (57); 
(ii) existence of the solution for the infinite linear system (55), (56); 

(iii) convergence of (54) for any p and, in particular, convergence of the series (92). 
From the mathematical point of view, since the solution of the dual integral equation 
is apparently unique, k can virtually be chosen to make the best approximation of the 
solution (the norm here can be important). Whereas, as noticed by Tranter, his method 
of approximate solution lacks clear-cut recommendations on fixing k .  The present 
approach employs the expected physical property of the solution to complete the 
mathematical method. 

Thus (93) indicates a physical implication of k :  it influences the type of singularity 
of P at the edge of the disk, z = 0, r + 1. Indeed, for k < 1, (93) produces a singularity 
at the edge of the disk of the type O((1 -r)"-'). For k > 1 the integral represents a 
continuous function of r ,  It is important to notice that this behaviour of the result does 
not depend on the value of Tu, provided the series (92) converges. 

On the other hand, the solution for the non-rotating case, Tu = 0, is known in closed 
form (Ray 1936); in particular 

for r < 1; 
4 1  

J,,(rp) sinp dp = -~ 
~ ( 1  -r2)t (94) 

i.e. in the non-rotating case P has a singularity O((1 -r)-i) .  The singularity originates 
from the geometric configuration, i.e. the edge of the disk. At infinitesimally small 
distance from the edge, the flow-field structure (not the amplitude) must be determined 
by the edge, the effect of rotation (represented by Tu) being not of primary importance 
because the Coriolis terms there are much smaller than the viscous shear and pressure 
gradient. It is this consideration that leads to the conclusion that, from the physical 
point of view, the correct value of k is i, independent of Tu, for this particular problem. 

f(p) = 0-sinp for p % 1; (95) 
Therefore (9 1) reads 

and the formula (93) for pressure on the disk takes the form 

J,,(rp) Lf(p) - 0- sinp] dp + 0- J,(rp) sinp dp I: 
0- 

= lo J,(rp) Lf(p) - 0- sinpl dp + - (1 -rz)P' 

Fast convergence of the first integral in (96) and the first term dominance in (54) in the 
vicinity of p = 0, when k = i, are used to estimate the order of magnitude of the 
pressure when 1 - r  = O(1) (i.e. not near the edge); one finds that the second term 
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FIGURE 4. The pressure distribution on the surface of the disk: (i) present solution; 

(ii) inviscid solution. 

becomes negligible for Ta % 1 and P = O(a,). On account of (72) and since the drag was 
shown to be of order Ta this means P = O( Tu). Computations of pressure, plotted on 
figure 4, display excellent agreement of the present outcome with the inviscid solution, 
P(r) = (2/71.) Ta( 1 - r2)f, for (1 - r )  2 O( Ta-4). 

The second term in (96), however, is able to give a significant enhancement of 
pressure as r +  1. Numerical evaluations give CT = O(Tai). So this effect becomes 
dominant if (1 - r )  < O(Ta-i), as indeed confirmed by the computations, see figure 4. 

It is interesting to note that with Ta increasing the magnitude of the singularity 
relative to the values in the core decreases like Ta-4. The range governed by this 
singularity (wherein an inviscid pressure distribution is not valid) shrinks in the same 
proportion. 

The large pressure on the disk at r + 1 evidently enhances the drag over the inviscid 
result (7). The order of magnitude of this addition can be estimated as follows: 

0- 
dr = O(Tai). (97) 

The relative excess AD/D appears to be of O(Ta-g), less than the analogous one for a 
sphere which is of O(Ta-i) according to Weisenborn’s calculations. This estimate is also 
in agreement with the numerical drag calculation displayed in table 3.  

Now the question of choosing k can be concluded. Physical considerations show that 
k = f. The rate of convergence of (57), as has been noticed, is best for k = fr. However, 
for any other positive values of k these integrals also exist. But, following Kantorovich 
& Krylov (1964, Chap. 1) we verified that the ‘generalized result’ of Koch is applicable 
to (55), (56) with k = +, whatever Ta is, i.e. the solution a,  is unique and can be 
obtained as a limit of the solutions for truncated systems of N equations with N 
variables as N +  00. We were not able to show thisfor any other k by virtue of the same 
or some other theorem, and thereby to validate the entire procedure. 

Finally, the rapid convergence of the coefficients a,, and so that of the series (54), 
for k = + is noted (see table 4), versus the not so favourable behaviour of a,  when 
solutions with different k were attempted. 

Though some calculations here are very sensitive to the choice of k,  the drag and 

s’ l-O(Ta-0 5 )  s’ 1-O(Ta-05) (1 -r2)t  
P(x,  z = 0’) dr = 471. AD = 471. 
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1000 0.5 542 512 8.3 -5.4 3.5 -2 0.9 -0.3 0.05 0.01 5.44 

4000 0.5 2129 2079 15.5 -11 8 -6 4.5 -3 1.8 -0.9 5.34 

TABLE 4. Coefficients of expansion (54) and the drag for k = t and 

1000 1.5 1559 -46 132 -189 188 -117 -9.5 152 -260 292 5.31 

4000 1.5 6231 79 27.7 -134 203 -211 148 -27 -117 234 5.27 

pressure in the core can be calculated, to the leading order, on the basis of k different 
from f .  In this respect it should be mentioned that for the disk geometry the simplified 
equations of Greenspan (1968,§4.3) (time-dependent but with no viscosity) and Moore 
& Saffman (1969) (steady with Ekman layers neglected) were solved by a method 
equivalent to taking k = in Tranter’s approach. In these cases only the leading term 
in the expansion (54) is non-zero and produces asymptotically, for Ta --f a, the correct 
solution for the simplified model without giving the correct type of singularity in the 
corner. Analogously, it appears that a finite number of terms in the expansion (54) with 
k different from f cannot produce a solution uniformly valid in the whole space. Here 
as an ad hoe validation of this conjecture, a comparison between the coefficients a, for 
k = f and k =; was performed and is displayed in table 4. One can judge the 
appropriate rate of convergence for a, and reliability of numerical evaluations with 
respect to k. 

The foregoing considerations, which lead to k = f in (54) and in particular the 
approximation (95) with CT = O(Ta;), make possible the evaluation of the ‘corner’ flow 
near the edge. Here the merging of the ‘vertical’ shear layer with the Ekman layer 
produces a delicate dynamical balance, which defies boundary-layer approximations. 

On account of (37), (58)-(60) and (61) we write 

G(s) w(r, z = 0) = - 1 + 1: J,(rp)f(p) 2p dp. 

The objective is to estimate the order of magnitude of (98) with respect to Ta (recall, 
w(z = 0, r )  = 0 for r < 1 and w + - 1 for r + a). To this end the interval of integration 
was split in several subintervals where different asymptotics for the involved functions 
are available. The details are given in Appendix B. The conclusion is that the maximal 
attainable w(r, z = 0) is O(Taz) at the distance 6 = r - 1 = O( Tap;) from the disk edge 
(see figure 5). 

Similar but more complicated evaluations show that for r = 1, IzI = O(Ta-i), w also 
attains values of order Tai. Subsequently, on account of (14) it can be derived that 
in the corner r -  1 % IzJ = O(Ta-a), u is also O(Ta2). The same result for v from (12) 
leads to the conclusion that all velocity components are of the same order of magnitude 
in the ‘corner’ of size O(Tad) around the edge. Numerical results, as shown on figure 
6, confirm these estimates. 

It is of some interest to compare the present evaluations of the ‘corner’ flow with 
those of Moore & Saffman (1969). In our notation their results for the axial velocity 
in the vertical shear layer (S + 1) read 
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FIGURE 6. The radial, azimuthal and axial velocities u, u, w, us. z at r = 1, Ta = 5000. 

where 6 = 6(2Tu/z)f. Although (99) was developed for z + Ta-i, it turns out that it 
agrees in order of magnitude with the present result when z = O( T d ) .  Comparison 
with the present solution beyond the Ekman layer displays fair agreement. 

For 6 < Tap: and z + Tad and so 5 < 1 the integral in (99) is approximately a 
constant of the order of unity. Therefore, w = O(Tag) when z = O(1) and grows till 
w = O(Tui) for z = O(Ta-i). But on decreasing z an infinite growth shows up in (99), 
while in the present analysis w will remain bounded by O(Tui), actually tending to 0 as 
z+O (the maximal value for r = 1 is attained when z = O(Ta-i), see figure 6). A 
comparison for the azimuthal velocity leads to a similar conclusion. 
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5. Concluding remarks 
The present ‘ exact’ solution of the full linear equations facilitates the analysis of the 

flow field past a rising disk in the rotating fluid for the whole range of Taylor numbers. 
The rigour of the mathematical approach (Tranter’s method of solving dual integral 
equations) is not sufficiently assessed at present, but the proof of the correctness of all 
the steps, comparison with the limiting cases and other ad hoc tests give strong support 
to the results. 

For small values of Tu a small departure from the non-rotating case was noted, 
without change of the principal conventional features. The correction to the Stokes 
drag formula for a disk is of the same type as for a sphere (Childress 1964); actually, 
a simple and accurate drag correlation, (86), could be conjectured for a particle of quite 
general geometry (subject to axi- and fore-and-aft symmetry). There is both analytical 
and experimental evidence that the sensitivity of the drag on a sphere to Ro is small, 
thus the linear theory results are applicable for Ro < 1. 

As the Taylor number Tu increases, the flow pattern begins to be modified: the shear 
effects tend to concentrate in Ekman and vertical shear layers, and a domain of 
recirculating fluid appears above (and below) the disk (approximately for Tu = 37). 
With further increase of Tu this domain quickly lengthens and widens, gaining the 
shape of a prolongated ‘bubble’, with a clearly defined envelope. It is quite evident that 
the trapped fluid in the bubble, plus the fluid flowing between it and the disk, can be 
identified as the experimentally observed ‘Taylor column’, or ‘slug’. The length of this 
domain, = 0.05 1 Ta, appears in good agreement with Maxworthy’s (1970) measured 
size of the ‘slug’ and with the corresponding value calculated by Barnard & Pritchard 
(1975) from Moore & Saffman’s (1969) solution. 

On the other hand, the present results are in contrast to some of Maxworthy’s 
interpretations of observations on the type of motion in this region. He theorized that 
the slug represented practically stagnant, very slowly moving fluid, supplying the 
Ekman-layer suction. It is seen here that the fluid sucked by the Ekman layer does not 
pass through the region of trapped fluid, rather goes around it, and the Ekman layer 
is separated from the bubble. The fluid in the bubble is purely recirculating and the 
corresponding velocities inside do not decay when Ta + co . The recirculation feature 
of the flow finds some theoretical support in the inviscid models of Greenspan (1968, 
94.3) and Miles (1972) and experimental confirmation in Orloff & Bossel (1971). 

Recent investigations by Tanzosh & Stone (1994) and by H. A. Stone, J. Bloxham 
and J. W. M. Bush provide a sharper corroboration of these important flow field 
properties, as follows. First, the numerical solution based upon a boundary-integral- 
type formulation of the governing linear equations for a sphere displays qualitative and 
quantitative agreement with the present results (the bifurcation occurs at Ta M 50, us. 
the present Ta M 37 for the disk). Second, in experiments with a silicone oil drop in water 
(Tu M lo4, Ro = 0.4), visualization by kalliriscope indicated a recirculation in the 
forward ‘wake’ (the rear wake was affected by the proximity of the boundary). 

It is interesting to compare the velocities calculated from the Moore & Saffman 
(1969) solution with the present ones. There is good agreement in the vertical shear 
layer, the upper part of the bubble and the flow above it. Obviously, the results are not 
comparable in the region of order Tap: around the disk. Moreover, they also differ 
significantly in the zone influenced by the Ekman suction over the disk, and also in the 
lower part of the bubble. Therefore, the omission of Ekman suction defies a clearcut 
analytical definition of the Taylor column boundaries. 

To evaluate the corner flow it was necessary to determine the correct value of the 
constant k which is employed in Tranter’s method. The principle that the type of the 
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pressure singularity at the corner is determined by the geometry of the configuration 
and is independent of Ta was suggested. On this basis it was estimated that the maximal 
values of the velocities are attained around the edge of the disk and their order or 
magnitude is Tai. This is consistent with Maxworthy’s observations that in the range 
of parameters in his experiments (Ta  = O(1000)) the enhancement of the axial velocity 
over the free-stream value is 25-50 %. 

The present calculations of the drag are consistent with the previous ones, i.e. for 
large Ta and zero Ro the drag on a sphere in an infinite domain is Y T a ,  as calculated 
by Stewartson (1952), with a relative error of probably O(Ta-i) at most. On the other 
hand, Maxworthy (1970) concluded, by smoothing and extrapolating experimental 
data, that for large Ta and small Ro the drag is 53 % larger than the linear result. 

The conclusion is that for large Ta the linear theory, augmented by the present 
incorporation of the Ekman layers, when compared with experiments (at small Ro), 
displays agreement in many flow-field features, but a significant discrepancy in the 
drag. 

Since the analysis of Hocking et al. (1979) on the influence of the endcaps of the 
container and the present investigation on the effect of the Ekman layers? fail to 
explain the 53 % discrepancy between Stewartson’s result and Maxworthy’s cor- 
relation, the only apparent deficiency in the theory, to which the disagreement can be 
attributed, remains the omission of the non-linear terms. 

This explanation is, however, not easy to accept. The basic assumption is that the 
linear theory, with Ro = 0, provides the leading term in some expansion in powers of 
Ro; therefore, it should be a fair approximation for small but finite Ro, provided the 
neglected terms are smaller than the retained ones. Moreover, for a fixed Ta, the 
accuracy of the approximation is expected to improve smoothly with the decrease of 
Ro. In the present linear solution no non-uniformities associated with the infinity of 
the domain (cf. Stokes’ flow) have been detected. The local non-uniformities appearing 
in the vertical shear layers seem unable to affect substantially the solution in the range 
of Maxworthy’s experiments. A careful inspection (Hocking et al. 1979, 56) indicates 
that, for Ro < lo-’ and Ta % 102-103, the nonlinear neglected terms are still only 
several percent of the leading ones. This stringent examination also reveals two 
disturbing trends in Maxworthy’s experimental results : (a)  the scattering with respect 
to Ro is large when Ro = O(lO-’); (b) the discrepancy with theory increases when Ro 
is reduced. 

These conflicting circumstances cast some doubt on the interpretation of the 
available experimental data and, in particular, on their extrapolation and smoothing 
that led to the conclusion that the real drag is 53 % higher than predicted by the linear 
theory. An independent experimental verification is necessary. If the previous 
experimental findings are confirmed we shall apparently face another fluid dynamics 
‘paradox’, see Goldshtik (1990), in the sense that the slightest, unavoidable, presence 
of momentum convection gives rise to a significant deviation from the linear flow field 
around the slowly rising sphere. 

We thank Professor A. Sidi for his help in the interpretation and evaluation of some 
improper integrals encountered in the present investigation. The research was partially 
supported by the Fund for the Promotion of Research at the Technion, and D. V. was 

The assumption is that these results can be superposed. The more physical model of an axially 
bounded domain with Ekman layers accounted for is presently under investigation. 
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Appendix A. Justification of the estimates (74), (75) and (77) 
Consider first (75) and assume Ta < 1. In view of the identity 

J;(p) = (2/np)isinp 
Ln.n reads 

The change of the variable p = (2Ta);s-i in the first integral of (A 2) results in 

(A 3) 
cc 2 "  1 ; J:, (G(s(p)) - 1) dp = Ta Jn d(G(s) - 1) ds = - KT&. 

Convergence of the last integral is readily verified and numerical evaluation provides 
K = 0.485. 

The second integral of (A 2) can be easily estimated after splitting the interval in 
three by Tai and 1. In view of the bounds (see (62)) 

1 - G(s) < s = 4Ta2/p4, 

0 < G(s) < 1, 0 dp2-sin2p 6 p 4  

the following estimates are readily produced : 

1 1 

dp < /,Ta'p2 dp = $Tat, 

dp d 4 s  y p 2 d p  = 4(Tat-Ta2), 

p' - sin'p 
0 f InTa' (1 - G(s)) p2 

p' - sin'p 

Tat P 

Thus, the result (75) is recovered: 

Ln,n = -0.485 Tai+O(Tag). 

The proof of (74) is similar. 
To obtain (77) the interval of integration is split in two by p = (max(n, m)): + 1. 

For definiteness, suppose n 3 m. On the second subinterval in view of (A 4) and the 
inequality J,(p) d 1 one readily has 
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On the first subinterval, since the power series expansion for Jzn+;(p) is of Leibniz 
type, the following estimate is employed : 

Other factors are bounded as on the second subinterval, hence 

In the last step Stirling's formula was used. Combining (A 10) and (A 12), and 
interchanging m, n if m > n, yields (77). 

Appendix B 
The velocity w for z = 0, expressed by (98), is amenable to an order-of-magnitude 

analysis with respect to Tu, for Ta+ co. Let I,, Il and I ,  be the contributions of the 
intervals [0, A,] ,  [A, ,  A ,  Tail and [A,  Tui, 001. 

We start by evaluating the contribution of the interval [A,,  A, Tu;] ( A ,  % 1 ,  A ,  < l), 
wherein (63) and (90) both are asymptotically valid. On account of (95), let 

The first integral can be shown to be o(1) and thus is negligible in the present 
consideration. Keeping the second and denoting S = r - 1 ,  we get 

1 
0- A,TaT 

pa [cospS- sinpS] dp 
4TU('~:r)t IA, 
4Ta('R:r); S-'lA18 

Il = 
1 

A,STaY 0- 
- - qi [cos q - sin q] dq. 

For S = O(l) ,  since 0- = O(Tui), after integration by parts Il = o(1). For 8 < T d  

0- 
- - $4; Tai = O( Tui). 

4 Tu( 'R: r)- 

It is readily seen that for Tad < 6 4 1 ,  O(1) < I ,  g Tap$: i.e. the maximal values of 
Il are of order Tad and attained at distance of order Tu-1 from the rim. 

Although these estimates are asymptotically correct provided A ,  --f 0, their validity 
is expected to hold for order-of-magnitude evaluation also when A ,  = 1 ,  see figure 1 .  
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(62), we get 

D. Vedensky and M .  Ungarish 

On the other hand, in a similar manner letting A ,  9 1, when s < 1 and G(s) z 1 by 

which shows the same order of magnitude with respect to 6 as Z,. Repeating the analysis 
similar to the one for 1, and letting A ,  = 1 reproduces the same outcome. 

It can be easily shown that 1, is of order 1 because A ,  = O(1) and the leading term 
a, = O(Ta) in (54) is dominant. Thus, the maximal attainable w(r,z = 0) is O(Tai) at 
the distance S = O(Tad) from the disk edge (6 > 0). Apparently for 6 < 0 the 
considered balance results in w = 0, the contributions of order O(Tai) from I ,  and I, 
cancel out. 
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